

# SuperView-1 Satellite IMAGERY PRODUCT GUIDE

(V1.1)

Compiled by SpaceWill Info. Co. Ltd.

The SuperView-1 Imagery User Guide provides essential information to the users about all SuperView-1 products and services. This document includes product levels, specifications, auxiliary files, coordinate convention and imaging time. SuperView-1 Satellite Imagery Product Guide is mainly purposed as a general guideline for SpaceWill customers interested in acquiring SpaceWill imagery products and services.

# CONTENTS

| 1. Overview                                          | 1  |
|------------------------------------------------------|----|
| 2. Imaging Product Options                           | 4  |
| 2.1 PMS (Panchromatic and Multiple Spectral) Product |    |
| 2.2 Pan-sharpened Product                            | 4  |
| 3. Basic Product (1B)                                | 5  |
| 3.1 Processing                                       | 5  |
| 3.2 Accuracy                                         | 5  |
| 3.3 Scope                                            | 6  |
| 3.4 Specifications for Basic Product                 | 6  |
| 4. Basic Stereo Product (1B)                         | 8  |
| 4.1 Processing                                       | 8  |
| 4.2 Accuracy                                         | 8  |
| 4.3 Scope                                            | 8  |
| 4.4 Specification for Stereo                         |    |
| 5. Ortho Ready Standard Products (2A)                | 10 |
| 5.1 Processing                                       | 10 |
| 5.2 Accuracy                                         | 10 |
| 5.3 Scope                                            | 10 |
| 5.4 Specifications for Ortho Ready Standard Product  |    |
| 6. Ortho Ready Stereo Products (2A)                  | 14 |
| 6.1 Processing                                       | 14 |
| 6.2 Accuracy                                         | 14 |
| 6.3 Scope                                            | 15 |
| 6.4 Specification for Ortho Ready Stereo Product     | 16 |
| 7. Product Structure                                 | 18 |
| 7.1 Product Format                                   | 18 |
| 7.2 Naming Pattern                                   | 18 |
| 8. Image Auxiliary Data (IAD)                        | 21 |
| 8.1 Vector                                           |    |

|   | 8.2 QuickView                              | 23 |
|---|--------------------------------------------|----|
|   | 8.3 Rational Polynomial Coefficients (RPC) | 24 |
|   | 8.4 XML                                    | 27 |
| 9 | Ocoordinate Conventions and Imaging Time   | 32 |
|   | 9.1 Coordinate Conventions                 | 32 |
|   | 9.2 Earth Coordinates                      | 32 |
|   | 9.3 Image Coordinates                      | 32 |
|   | 9.4 Imaging Time                           | 33 |
| 1 | 0 Technical Support and Claims             | 34 |

# 1. Overview

SuperView-1 (SV-1) is composed of 4 identical VHR EO satellites running along the same orbit and phrased 90° from each other. The first two satellites were launched in December 2016 and the second two were launched in January 2018.

SuperView-1 imagery products are available in different processing levels. The products are delivered with a set of support files to assist users in processing and analyzing the imagery.

All SuperView-1 imagery products are corrected for radiometric and sensor distortions. Radiometric corrections include relative radiometric response between detectors, non-responsive detector fill, and conversion for absolute radiometry. Sensor corrections include corrections for internal detector geometry, optical distortion, scan distortion, line-rate variations and misregistration of the multispectral bands where applicable.

| CHARACTERISTICS  | DETAILS                      |  |
|------------------|------------------------------|--|
| Loursh Time      | SV-1 01&02: 28 December 2016 |  |
| Launch Time      | SV-1 03&04: 9 January 2018   |  |
| Orbital Altitude | 530 km (nadir)               |  |
| Туре             | Sun-synchronous              |  |
| Period           | 97 minutes                   |  |
| Design Life      | 8 years                      |  |
|                  | Panchromatic: 450-890 nm     |  |
| Sensor Bands     | Blue: 450-520 nm             |  |
|                  | Green: 520-590 nm            |  |
|                  | Red: 630-690 nm              |  |
|                  | Near-IR: 770-890 nm          |  |

# Table 1. SuperView-1's Design and Specifications

| Spatial Resolution                     | PAN: 0.5 m; MS: 2 m (nadir) |  |
|----------------------------------------|-----------------------------|--|
| Dynamic Range                          | 11 bits                     |  |
| Swath Width                            | 12 km (nadir)               |  |
| Onboard Storage                        | 4.0 TB                      |  |
| Stereo Imaging                         | Yes                         |  |
| Revisit Time                           | 1 day/4 satellites          |  |
| Positioning Accuracy                   | 9.5m CE90 (nadir)           |  |
| Data Transmission                      | 2 * 450 Mbps                |  |
| Daily Capacity                         | 600,000 km² / satellite     |  |
| Internal Geometric Accuracy            | 1 pixel                     |  |
| PAN&MS Registration Accuracy           | 0.2 pixel                   |  |
| MS Band-to-band Registration Accuracy  | 0.15 pixel                  |  |
| Relative Accuracy of Stereo Pair Model | 0.3 pixel                   |  |
| Relative Calibration Accuracy          | 1.5 %                       |  |
| MTF@Nyquist                            | PAN ≥0.12; MS≥0.25          |  |

SuperView-1 imagery products are provided in two different levels: 1B and 2A.

| Processing Level | Product Name                       | Description                                                                                                              | Suggested Application                                                         |
|------------------|------------------------------------|--------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|
| 18               | Basic Product                      | Basic SuperView-1 imagery<br>products are corrected for<br>radiometric and sensor<br>distortion and are not<br>projected | Mainly used for<br>photogrammetric<br>processing and mapping                  |
| 2A               | Ortho Ready<br>Standard<br>Product | Projected and resampled,<br>projected to ellipsoid in<br>using current image mean<br>elevation                           | Used for orthorectification,<br>feature extraction and land<br>classification |

# Table 2. Processing Levels and Product Types

# Table 3. Product Processing Levels

| Processing Types | Processing Procedure               |                           |                      |                         |                    |
|------------------|------------------------------------|---------------------------|----------------------|-------------------------|--------------------|
| Level            |                                    | Radiometric<br>Correction | Sensor<br>Correction | Geometric<br>Correction | Orthorectification |
| 18               | Basic Product                      | V                         | V                    |                         |                    |
| 2A               | Ortho Ready<br>Standard<br>Product | V                         | V                    | V                       |                    |

# **2. Imaging Product Options**

SuperView-1 imagery is classified into 2 types of products:

**PMS (Panchromatic and Multiple Spectral)**: The product is combined of panchromatic and multiple spectral bands.

• Panchromatic (PAN): The product includes 1 band;

• Multiple Spectral (MUX): The product includes 4 bands that are Blue, Green, Red and Near-infrared

**Pan-sharpened:** The product combines the visual information of multiple spectral data with the spatial information of panchromatic data.

## 2.1 PMS (Panchromatic and Multiple Spectral) Product

• Pan includes 1 band and is black and white, its ground sampling distance (GSD) is 50 cm.

• The multi-spectral band sequence is in order of shortest wavelength to longest wavelength, and the band order is Blue (B), Green (G), Red (R), and Near Infrared (NIR). The ground sampling distance (GSD) is 2 meters.

## 2.2 Pan-sharpened Product

Pan-sharpened product combines the visual information of the multispectral data with the spatial information of the panchromatic data, resulting in a higher resolution color product. SuperView-1 pan-sharpen imagery products are offered as 4-band and stereo products. The GSD of a pan-sharpened product is 0.5 m. The Pan-sharpened product is delivered with geotiff format.

# **3. Basic Product (1B)**

Basic Product is the processing level closest to the natural image acquired by a satellite. The products are offered for clients with satellite imagery processing techniques acquiring to apply their own processing methods (orthorectification) and equipment. In this condition, these products are offered with attitude, ephemeris, and camera model information. Each unique image in a Basic Product is processed individually. Basic Products have an "as-collected" GSD. The pan-sharpening option is not available with a Basic Product.

## 3.1 Processing

Basic Products are radiometrically corrected and sensor corrected, but not geometrically corrected or projected to a plane using a map projection or datum. The sensor correction blends all pixels from all detectors into the synthetic array to form a single image.

The main radiometric processing includes:

- Relative radiometric response between detectors;
- Correction of differences in sensitivity between the detectors;

The sensor corrections include:

- Internal detector geometry;
- Optical distortion correction;
- Registration of the panchromatic and multispectral bands.

#### 3.2 Accuracy

Basic Products are radiometrically corrected and sensor corrected, while there are no projected to a plane using a map projection or datum. The geolocation accuracy with 9.5m CE90 can be archived without the consideration of terrain and off-nadir effect. And the geolocation accuracy will be better than 1m if the high accuracy GCPs and DEM have been provided during the processing.

The registration accuracy among the multispectral band is better than 0.1 pixel. The registration accuracy between the panchromatic and multispectral band is also better than 0.1 pixel.

### 3.3 Scope

Basic Products are delivered as per scene with 12km x 12km (at nadir).

#### **3.4 Specifications for Basic Product**

The following table lists the processing specifications, product delivery parameters, and delivered Image Auxiliary Data (IAD) Files for Basic Products.

| Table 4. | Specifications | for Basic | Products |
|----------|----------------|-----------|----------|
|----------|----------------|-----------|----------|

| PHYSICAL CHARACTERISTICS                         |                                                                          |  |
|--------------------------------------------------|--------------------------------------------------------------------------|--|
| Minimal Orderable Area                           | Single scene 144 km <sup>2</sup>                                         |  |
| Strip Width                                      | 12 km (at nadir)                                                         |  |
| PROCESS                                          | ING SPECIFICATIONS                                                       |  |
| Absolute Geolocational Accuracy                  | 9.5 m CE90 ( $<$ off-nadir 25°), excluding terrain and off-nadir effects |  |
| PRODU                                            | JCT PARAMETERS                                                           |  |
| Band Option                                      | Pan and Multispectral band                                               |  |
| Number of Bits per Pixel<br>in Delivered Product | 16 bits                                                                  |  |
| Resampling Methods                               | Nearest Neighbor<br>Bilinear interpolation<br>Cubic convolution          |  |
| Output Pixel Spacing                             | As camera collected                                                      |  |
| Cloud Cover                                      | 0-15% default, other options available upon request                      |  |

| DELIVERY PARAMETERS            |                                             |  |
|--------------------------------|---------------------------------------------|--|
| Media Options                  | FTP, DVD, External Hard Drive               |  |
| Image Data Format              | GeoTIFF                                     |  |
| IMAGE                          | AUXILIARY DATA                              |  |
| IAD Files Supplied to Customer | Shapefile<br>Quickview rpb file<br>xml file |  |

# 4. Basic Stereo Product (1B)

Basic Stereo Products are applicable for photographic surveying and are suitable for customers with a high level of image expertise and who have software that is capable of ingesting, processing, and/or displaying stereo imagery. Basic Stereo Products are typically used to create Digital Elevation Models or for three-dimensional feature extraction.

## 4.1 Processing

Basic Products are radiometrically corrected and sensor corrected, but not geometrically corrected or projected to a plane using a map projection or datum. The sensor correction blends all pixels from all detectors into the synthetic array to form a single image. The resulting GSD varies over the entire product because the look angle slowly changes during the imaging process.

#### 4.2 Accuracy

Basic Products are radiometrically corrected and sensor corrected, while there are no projected to a plane using a map projection or datum. However, if the data processing is supplied with a refined Image Auxiliary Data (IAD), a horizontal geolocational accuracy will be 9.5m CE90, excluding terrain and off-nadir effects, can be achieved. And vertical geolocational accuracy is 9.5 m LE90.

#### 4.3 Scope

Basic Products are delivered as per scene with 12km x 12km (at nadir).

## 4.4 Specifications for Stereo Products

The following table lists the processing specifications, product delivery parameters, and delivered Image Auxiliary Data (IAD) Files for Basic Stereo Products.

# Table 5. Specifications for Basic Stereo Products

| PHYSICAL CHARACTERISTICS                         |                                                                 |  |
|--------------------------------------------------|-----------------------------------------------------------------|--|
| Minimal Orderable Area                           | Single scene 144 km <sup>2</sup>                                |  |
| Strip Width                                      | 12 km (at nadir)                                                |  |
| PROCESS                                          |                                                                 |  |
| Absolute Geolocational Accuracy                  | 9.5 m CE90 excluding terrain and off-nadir effects              |  |
| Absolute Vertical Geolocational Accuracy         | 9.5 m LE90 excluding terrain and off-nadir effects              |  |
| PRODU                                            | JCT PARAMETERS                                                  |  |
| Band Option                                      | Pan and Multispectral bands                                     |  |
| Number of Bits per Pixel<br>in Delivered Product | 16 bits                                                         |  |
| Resampling Methods                               | Nearest Neighbor<br>Bilinear interpolation<br>Cubic convolution |  |
| Output Pixel Spacing                             | As camera collected                                             |  |
| Cloud Cover                                      | 0-15% default, other options available upon request             |  |
| DELIVE                                           | ERY PARAMETERS                                                  |  |
| Media Options                                    | FTP, DVD, External Hard Drive                                   |  |
| Image Data Format                                | GeoTIFF                                                         |  |
| IMAGE                                            | AUXILIARY DATA                                                  |  |
| IAD Files Supplied to Customer                   | Shapefile<br>Quickview rpb file<br>xml file                     |  |

# 5. Ortho Ready Standard Products (2A)

Ortho Ready Standard Products are usually required by users for modest absolute accuracy with a large area coverage. Ortho Ready Standard Products are processed by users utilizing the sufficient image process software and knowledge for a wide variety of applications.

## 5.1 Processing

Ortho Ready Standard Products are radiometrically corrected, sensor corrected, and projected to a ellipsoid using current image mean elevation for each panchromatic and multispectral. All Ortho Ready Standard Products can have a uniform GSD throughout the entire product. The default projection is UTM projection. Ortho Ready Standard Products are available in panchromatic at 0.5 meters and multi-spectral bands at 2 meters. The radiometric corrections applied to the Ortho Ready Standard Product include relative radiometric response between detectors and non-responsive detectors. The sensor corrections include internal detector geometry, optical distortion, scan distortion, any line-rate variations, and registration of the panchromatic and multispectral bands. Geometric corrections remove spacecraft orbit position and attitude uncertainty, Earth rotation and curvature, and panoramic distortion.

## 5.2 Accuracy

The geolocation accuracy with 9.5m CE90 can be archived excluding terrain and off-nadir effect. And the geolocation accuracy will be better than 1m if the high accuracy GCPs and DEM have been provided during the processing.

The registration accuracy among the multispectral band is better than 0.1 pixel.

The registration accuracy between the panchromatic and multispectral band is also better than 0.1 pixel.

## 5.3 Scope

Ortho Ready Standard Products are delivered with entire scene and are also delivered with AOI provided by the users.

Ortho Ready Standard Products are delivered as one image file for each strip the order polygon intersects. If the order polygon intersects more than one strip, the imagery in each strip will be delivered as separate files, will not be mosaicked together to form a single image, and will not be radiometrically balanced.

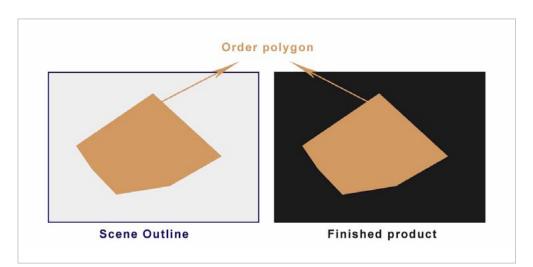



Figure 1. Product Structure for Standard Products within a Single Strip

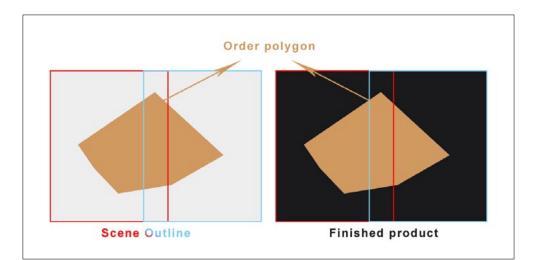



Figure 2. Product Structure for Projected Multi-Strip Products

# 5.4 Specifications for Ortho Ready Standard Products

The following table lists the processing specifications, product delivery parameters, and delivered Image Auxiliary Data (IAD) Files for Ortho Ready Standard Product.

| PHYSICAL CHARACTERISTICS                         |                                                                 |  |
|--------------------------------------------------|-----------------------------------------------------------------|--|
| Minimal Orderable Area 25 km <sup>2</sup>        |                                                                 |  |
| Strip Width                                      | 12 km (at nadir)                                                |  |
| PROCESS                                          | ING SPECIFICATIONS                                              |  |
| Absolute Geolocational Accuracy                  | 9.5 m CE90 excluding terrain and off-nadir effect               |  |
| Terrain during Processing                        | Current image mean elevation                                    |  |
| PRODUCT PARAMETERS                               |                                                                 |  |
| Band Option                                      | Pan and Multispectral band                                      |  |
| Number of Bits per Pixel<br>in Delivered Product | 16 bits                                                         |  |
| Resampling Methods                               | Nearest Neighbor<br>Bilinear interpolation<br>Cubic convolution |  |
| Output Pixel Spacing                             | Panchromatic: 50 cm<br>Multispectral: 2 m                       |  |
| Output Alignment                                 | Rotated to Map North Up                                         |  |
| Cloud Cover                                      | 0-15% default, other options available upon request             |  |

# Table 6. Specifications for Basic Products

| DELIVERY PARAMETERS            |                                                |  |
|--------------------------------|------------------------------------------------|--|
| Media Options                  | FTP, DVD, External Hard Drive                  |  |
| Image Data Format              | GeoTIFF                                        |  |
| IMAGI                          | E AUXILIARY DATA                               |  |
| IAD Files Supplied to Customer | Shapefile<br>Quickview<br>rpb file<br>xml file |  |

# 6. Ortho Ready Stereo Products (2A)

Ortho Ready Stereo Products are processed by users utilizing the sufficient image process software and knowledge for creating Digital Elevation Models or for three-dimensional feature extraction.

# 6.1 Processing

Ortho Ready Stereo Products are radiometrically corrected, sensor corrected, and projected to a plane using the map projection and datum. All Ortho Ready Stereo Products can have a uniform GSD throughout the entire product. The default projection is UTM projection. Ortho Ready Standard Products are available in panchromatic at 0.5 meters and multi-spectral bands at 2 meters. The radiometric corrections applied to the Ortho Ready Standard Product include relative radiometric response between detectors and non-responsive detectors. The sensor corrections include internal detector geometry, optical distortion, scan distortion, any line-rate variations, and registration of the panchromatic and multispectral bands. Geometric corrections remove spacecraft orbit position and attitude uncertainty, Earth rotation and curvature, and panoramic distortion.

## 6.2 Accuracy

The geolocation accuracy with 9.5m CE90 can be archived excluding terrain and off-nadir effect. And the geolocation accuracy will be better than 1m if the high accuracy GCPs and DEM have been provided during the processing.

The digital elevation model accuracy can be archived better than 1m when the data processed using Image Auxiliary Data (IAD) and high accurate control point.

The registration accuracy among the multispectral band is better than 0.1 pixel. The registration accuracy between the panchromatic and multispectral band is also better than 0.1 pixel.

#### 6.3 Scope

Ortho Ready Stereo Products are delivered with entire scene and are also delivered with AOI provided by the users. Ortho Ready Stereo Products are delivered as one image file for each strip the order polygon intersects. If the order polygon intersects more than one strip, the imagery in each strip will be delivered as separate files, will not be mosaicked together to form a single image, and will not be radiometrically balanced.

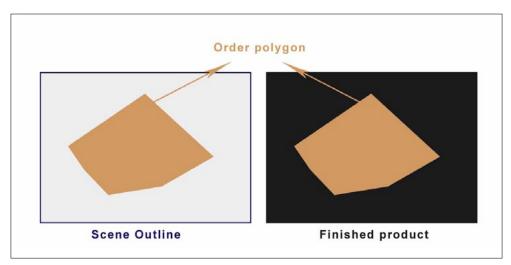



Figure 3. Product Structure for Standard Products within a Single Strip

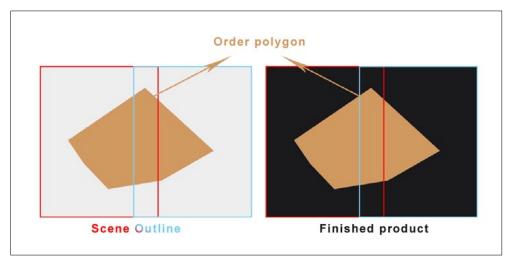



Figure 4. Product Structure for Projected Multi-Strip Products

# 6.4 Specification for Ortho Ready Stereo Products

The following table lists the processing specifications, product delivery parameters, and delivered Image Auxiliary Data (IAD) Files for Ortho Ready Stereo Product.

# Table 7. Specifications for Basic Products

| PHYSICAL CHARACTERISTICS                         |                                                                 |  |  |
|--------------------------------------------------|-----------------------------------------------------------------|--|--|
| Minimal Orderable Area                           | 25 km²                                                          |  |  |
| Strip Width                                      | 12 km (at nadir)                                                |  |  |
| PROCESS                                          |                                                                 |  |  |
| Absolute Geolocational Accuracy                  | 9.5 m CE90 excluding terrain and off-nadir effect               |  |  |
| Terrain during Processing                        | Current image mean elevation                                    |  |  |
| PRODUCT PARAMETERS                               |                                                                 |  |  |
| Band Option                                      | Pan-multispectral band                                          |  |  |
| Number of Bits per Pixel<br>in Delivered Product | 16 bits                                                         |  |  |
| Resampling Methods                               | Nearest Neighbor<br>Bilinear interpolation<br>Cubic convolution |  |  |
| Output Pixel Spacing                             | Panchromatic: 50 cm<br>Multispectral: 2 m                       |  |  |
| Output Alignment                                 | Rotated to Map North Up                                         |  |  |
| Cloud Cover                                      | 0-15% default, other options available upon request             |  |  |

| DELIVERY PARAMETERS            |                                                |  |
|--------------------------------|------------------------------------------------|--|
| Media Options                  | FTP, DVD, External Hard Drive                  |  |
| Image Data Format              | GeoTIFF                                        |  |
| IMAGE AUXILIARY DATA           |                                                |  |
| IAD Files Supplied to Customer | Shapefile<br>Quickview<br>rpb file<br>xml file |  |

# 7. Product Structure

#### 7.1 Product Format

Imagery products are delivered to customers in GeoTIFF format.

#### 7.2 Naming Pattern

Imagery Product's name is provided with concise information about the product and its context. The naming is composed of collection date, band type, product level, product ID.

#### Naming Pattern of Imagery Products are specified in following:

- Satellite name\_collection date\_product level&ID\_product folder name-band type.format extention

- Case: SV1-01\_20170101\_L1B0001622957\_1101170001001\_01-PAN.tiff
- Satellite Name: SV1-01\SV1-02\SV1-03\SV1-04
- Product Level: L1B or L2A
- Product ID: 0001622957
- Product Folder Name: 1101170001001\_01
- Band Type: PAN (panchromatic) and MUX (multispectral)

#### Naming Pattern of Product Folders are specified in following:

- Contract ID: 1101170001
- Sub-contract ID: 1101170001001
- Batch: 1101170001001\_01

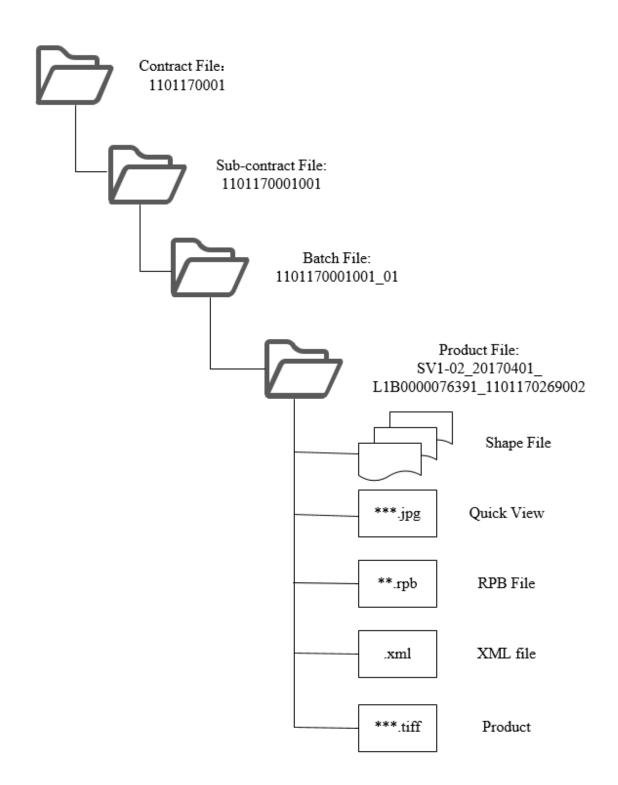



Figure 5 File Structure (Delivered by Scene)

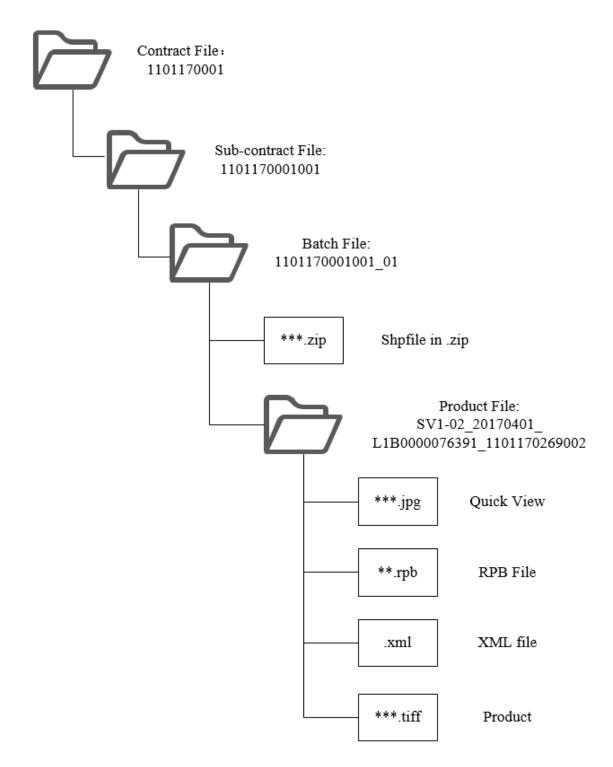



Figure 6 File Structure (Delivered by AOI)

\*Note: The only difference of file structure between delivered by scene and AOI is the shapefile will be included in Product File if it is delivered by scene and the shapefile will be downloaded together with Product file if it is delivered by AOI.

The files such as .fin, .db and .aux etc. indicated in the Product File are disregarded due to the generation by the software and/or transition from FTP.

# 8. Image Auxiliary Data (IAD)

All Products are delivered with Image Auxiliary Data (IAD) including vector (.shx, .shp, .dbf, and .prj), quickview (.jpg), rpb file (.rpb) and xml file (.xml).

- Vector: is used to describe the distribution of the product, and it also has a series of attributes that describes the product details.

- Quickview: is the preview of an image product rotation angle as the image product.

- Rational Polynomial Coefficients (RPB): contains the RPB information which is used to rectify image.

- XML: is used to describe the metadata of the product with xml format. The XML file is also containing the satellite attitude, ephemeris, and geometric calibration data.

#### 8.1 Vector

The format of vector file is a shapefile which describes the distribution of imagery product and a series of attribute that describes the product details.

| Field Name  | Description      | Comment                         | Remarks |
|-------------|------------------|---------------------------------|---------|
| Productid   | Product ID       | 475922                          |         |
| Ordername   | Order Name       | 1108180084                      |         |
| Satelliteid | Satellite ID     | SV1-01\SV1-02\SV1-<br>03\SV1-04 |         |
| Acqdate     | Acquisition date | YYYY-MM-<br>DDThh:mm:ss         |         |
| ProductLev  | Product Level    | LEVEL1B/2A                      |         |
| CloudCover  | Cloud cover      | 0.00000 - 100.00000             |         |
| Viewangle   | View angle       | 5                               |         |

# Table 8. Specifications of Shapefiles

| MapProject | Map Projection                                                                                                                     | UTM                 |  |
|------------|------------------------------------------------------------------------------------------------------------------------------------|---------------------|--|
| Coorsystem | Coordinate System                                                                                                                  | WGS84               |  |
| Mapzone    | Map Zone                                                                                                                           | 18 Only for         |  |
| GSD        | Ground sampling distance<br>(resolution)                                                                                           | 2                   |  |
| BandInfo   | Band information                                                                                                                   |                     |  |
| Ulx        |                                                                                                                                    |                     |  |
| Uly        |                                                                                                                                    | -                   |  |
| Urx        |                                                                                                                                    | Corner coordinate   |  |
| Ury        |                                                                                                                                    |                     |  |
| Lry        |                                                                                                                                    |                     |  |
| Lrx        |                                                                                                                                    |                     |  |
| Llx        |                                                                                                                                    | -                   |  |
| Lly        |                                                                                                                                    | Center coordinate   |  |
| Centerx    |                                                                                                                                    |                     |  |
| horError   | Horizontal Error                                                                                                                   | 0                   |  |
| Gain       | Gain                                                                                                                               |                     |  |
| Offset     | Offset                                                                                                                             |                     |  |
| SatAz      | Satellite Azimuth<br>Strip direction angle relative<br>to the North                                                                | 0.00000 – 360.00000 |  |
| SatEl      | Satellite Elevation<br>The angle between the light<br>and the horizontal plane<br>from the optical center to<br>the incident point | 0.00000 – 90.00000  |  |
| sunAz      | Sun Azimuth                                                                                                                        | 0.00000 - 360.00000 |  |
| sunEl      | Sun Elevation                                                                                                                      | 0.00000 - 90.00000  |  |

| prodDate   | Product date         | YYYY-MDDThh:mm:ss |  |
|------------|----------------------|-------------------|--|
| ESUN       | Solar Irradiance     |                   |  |
| Descending | Descending/Ascending | D                 |  |
| incidenceA | Incident Angle       | 0-45              |  |
| SubID      | Sub ID               | 1108180084001     |  |
| SceneID    | Scene ID             | 464032            |  |
| SensorID   | Sensor ID            | PMS               |  |

## 8.2 Quickview

The quickview file is the preview of an image product with the rotation angle as the image product. The quickview file is the JEPG format for PAN and MUX. The true color will be viewed for MUX and the gray scale will be viewed for PAN.

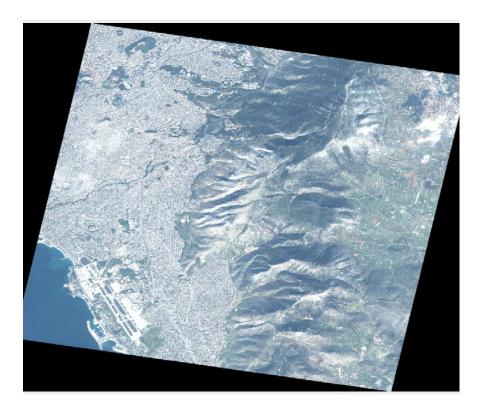



Figure 7. The Quickview File of True Color for MUX

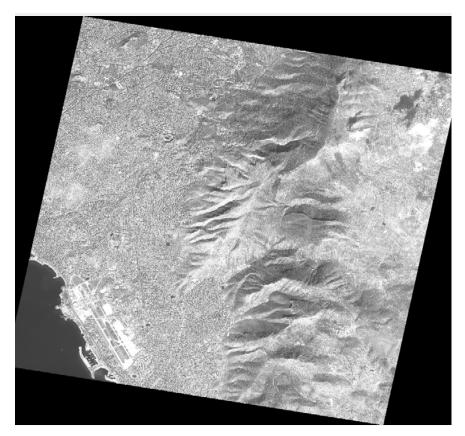



Figure 8. The Quickview File of Gray Scale for PAN

## 8.3 Rational Polynomial Coefficients (RPC)

RPC Files contains the coefficient for rapid positioning capability, also called Rational Polynomial Coefficients (PRC). This a mathematical mapping from object space coordinates to image space coordinates. This mapping includes non-ideal imaging effects, such as lens distortion, light aberration, and atmospheric refraction.

RPC files express the normalize column and row values in an image (rn, cn), as a ratio of polynomials of the normalized geodetic latitude, longitude, and height, (P, L, H). Normalized values are used instead of actual values to minimize numerical errors in the calculation. The scales and offset of each parameter are selected so that all normalized values fall in the range [-1, 1]. The normalization used is as follows:

$$\begin{split} P &= (Latitude - LAT_OFF)/LAT_SCALE \\ L &= (Longitude - LONG_OFF)/LONG_SCALE \\ H &= (Height - \\ HEIGHT_OFF)/HEIGHT_SCALE \ r_n \ = (ROW \\ - LINE_OFF)/LINE_SCALE \end{split}$$

 $C_n = (Columm -$ 

#### SAMP\_OFF)/SAMP\_SCALE

Each polynomial is up to third order in P, L and H, having as many as 20 terms. The rational functions are:

$$\mathbf{r}_{n} = \frac{\sum_{i=1}^{20} LINE - NUM - COEF_{i} \cdot \rho_{i}(P, L, H)}{\sum_{i=1}^{20} LINE - DEN - COEF_{i} \cdot \rho_{i}(P, L, H)}$$

LINE\_NUM\_COEF, LINE\_DEN\_COEF, SAMP\_NUM\_COEF, and SAMP\_DEN\_COEF are 20-term vectors of coefficient that are given in the RPC file. Pi (P, L, H) is a 20-term vector with the following terms:

| I. | Pi (P, L, H) | I  | Pi (P, L, H) |
|----|--------------|----|--------------|
| 1  | 1            | 11 | PHL          |
| 2  | L            | 12 | L3           |
| 3  | Р            | 13 | LP2          |
| 4  | Н            | 14 | LH2          |
| 5  | LP           | 15 | L2P          |
| 6  | LH           | 16 | Р3           |
| 7  | РН           | 17 | PH2          |
| 8  | L2           | 18 | L2H          |
| 9  | P2           | 19 | P2H          |

#### Table 9. RPC Terms

For example, for a generic set of polynomial coefficients Ci, the corresponding 20-term cubic polynomial has the form:

$$\begin{split} f(P, L, H) &= C_1 + C_2 L + C_3 P + C_4 H + C_5 L P + C_6 L H + C_7 P H + C_8 L^2 + C_9 P^2 + C_{10} H^2 \\ &+ C_{11} P L H + C_{12} L^3 + C_{13} L P^2 + C_{14} L H^2 + C_{15} L^2 P + C_{16} P^3 + C_{17} P H^2 \\ &+ C_{18} L H^2 + C_{19} P^2 H + C_{20} H^3 \end{split}$$

The image coordinates are expressed in pixels. The ground coordinates are latitude and longitude in decimal degrees, and geodetic elevations (height above the ellipsoid) in meters.

There is only one set of coefficients for 1B and 2A imagery products. The following table defines the PRC file contents:

| Field        | Field Name/Description                                                                                                                        | Format Range                | Comments |
|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|----------|
| Satid        | Satellite ID                                                                                                                                  | "SV1-01\SV1-02\SV-03\SV-04" |          |
| bandld       | "PAN"=Panchromatic                                                                                                                            | "PAN"                       |          |
| bandid       | "MUX"=Multi-spectral bands                                                                                                                    | "MUX"                       |          |
| SpecId       | Identification of the<br>specification which defines the<br>RPC implementation used for<br>generating and/or interpreting<br>the coefficients | "RPB"                       |          |
|              | BEGIN_GROUI                                                                                                                                   | P =IMAGE                    |          |
| errBias      | Bias error                                                                                                                                    | Range: 0.00 – 9999.99       |          |
| errRand      | Random error                                                                                                                                  | Range: 0.00 – 9999.99       |          |
| lineOffset   | LINE_OFFSET                                                                                                                                   | Range: 0.00 – 9999.99       |          |
| sampOffset   | SAMP_OFFSET                                                                                                                                   | Range: 0.00 – 9999.99       |          |
| latOffset    | LAT_OFFSET                                                                                                                                    | Range: ±90.0000             |          |
| longOffset   | LONG_OFFSET                                                                                                                                   | Range: ±180.0000            |          |
| heightOffset | HEIGHT_OFFSET                                                                                                                                 | Range: ±9999                |          |
| lineScale    | LINE_SCALE                                                                                                                                    | Range: 1.00 – 9999.99       |          |

# Table 10. Specifications of RPC

| sampScale   | SAMP_SCALE                                                                                            | Range: 1.00 – 9999.99                |  |
|-------------|-------------------------------------------------------------------------------------------------------|--------------------------------------|--|
| latScale    | LAT_SCALE                                                                                             | Range: ±90.0000                      |  |
| longScale   | LONG_SCALE                                                                                            | Range: ±180.0000                     |  |
| heightScale | HEIGHT_SCALE                                                                                          | Range: ±9999                         |  |
| lineNumCoef | LINE_NUM_COEF.<br>Twenty coefficients for the<br>polynomial in the umerator of the rn<br>equation.    | Range: ± 9.999999 * 10 <sup>±9</sup> |  |
| lineDenCoef | LINE_DEN_COEF. Twenty coefficients<br>for the polynomial in the<br>denominator of the rn equation.    | Range: ± 9.999999 * 10 <sup>±9</sup> |  |
| sampNumCoef | SAMP_NUM_COEF.<br>Twenty coefficients for the<br>polynomial in the numerator of the<br>cn equation.   | Range: ± 9.999999 * 10 <sup>±9</sup> |  |
| sampDenCoef | SAMP_DEN_COEF.<br>Twenty coefficients for the<br>polynomial in the denominator of<br>the cn equation. | Range: ± 9.999999 * 10 <sup>±9</sup> |  |

### 8.4 XML

The XML file contains all the general metadata information of Imagery Products including the attitude, ephemeris and geometric calibration file as well.

# Table 11. XML File Contents

| Field Name       | Туре     | Remarks                              |
|------------------|----------|--------------------------------------|
| SatelliteID      | Enum     |                                      |
| ReceiveStationID | String   |                                      |
| SensorID         | Enum     |                                      |
| ReceiveTime      | Datetime | YYYY-MM-DD<br>HH:MM:SS,UTC Time      |
| OrbitID          | Int      | [1,999999]                           |
| OrbitType        | String   |                                      |
| AttType          | String   |                                      |
| StripID          | Int      |                                      |
| ProduceType      | String   | STANDARD                             |
| SceneID          | Long     |                                      |
| DDSFlag          | String   |                                      |
| ProductID        | Long     |                                      |
| ProductLevel     | Enum     | LEVEL1B                              |
| ProductFormat    | Enum     | GEOTIFF                              |
| ProduceTime      | Datetime | YYYY-MM-DD HH:MM:SS,<br>Beijing Time |
| Bands            | String   |                                      |
| ScenePath        | Long     |                                      |
| SceneRow         | Long     |                                      |
| SatPath          | Int      |                                      |
| SatRow           | Int      |                                      |
| SceneCount       | Int      |                                      |
| SceneShift       | Double   | 1-99                                 |

| StartTime           | Datetime | YYYY-MM-DD HH:MM:SS,<br>Beijing Time |
|---------------------|----------|--------------------------------------|
| EndTime             | Datetime | YYYY-MM-DD HH:MM:SS,<br>Beijing Time |
| CenterTime          | Datetime | YYYY-MM-DD HH:MM:SS,<br>Beijing Time |
| StarLine            | Int      |                                      |
| EndLine             | Int      |                                      |
| OrderID             | String   |                                      |
| Gain                | Double   |                                      |
| Offset              | Double   |                                      |
| ImageGSD            | Double   |                                      |
| WidthInPixels       | Long     |                                      |
| HeightInPixels      | Long     |                                      |
| WidthInMeters       | Long     |                                      |
| HeightInMeters      | Long     |                                      |
| PixelBits           | Int      |                                      |
| ValidPixelBits      | Int      |                                      |
| CloudPercent        | Double   | 0-100                                |
| RollViewingAngle    | Double   |                                      |
| PitchViewingAngle   | Double   |                                      |
| RollSatelliteAngle  | Double   |                                      |
| PitchSatelliteAngle | Double   |                                      |

| YawSatelliteAngle   | Double   |            |
|---------------------|----------|------------|
| SolarAzimuth        | Float    |            |
| SolarZenith         | Float    |            |
| SatelliteAzimuth    | Float    |            |
| SatelliteZenith     | Float    |            |
| GainMode            | String   |            |
| IntegrationTime     | Datetime |            |
| IntegrationLevel    | Int      |            |
| MapProjection       | Enum     | UTM        |
| EarthEllipsoid      | Enum     | WGS84      |
| ZoneNo              | Int      |            |
| ResamplingKernel    | Enum     | BL         |
| HeightMode          | Enum     | AVE-DEM    |
| MtfCorrection       | Enum     |            |
| CenterLatitude      | Double   |            |
| CenterLongitude     | Double   |            |
| TopLeftLatitude     | Double   | [-90,90]   |
| TopLeftLongitude    | Double   | [-180,180] |
| TopRightLatitude    | Double   | [-90,90]   |
| TopRightLongitude   | Double   | [-180,180] |
| BottomRightLatitude | Double   | [-90,90]   |

| BottomRightLongitude | Double | [-180,180] |
|----------------------|--------|------------|
| BottomLeftLatitude   | Double | [-90,90]   |
| BottomLeftLongitude  | Double | [-180,180] |
| TopLeftMapX          | Double |            |
| TopLeftMapY          | Double |            |
| TopRightMapX         | Double |            |
| TopRightMapY         | Double |            |
| BottomRightMapX      | Double |            |
| BottomRightMapY      | Double |            |
| BottomLeftMapX       | Double |            |
| BottomLeftMapY       | Double |            |
| DataArchiveFile      | String |            |
| BrowseFileLocation   | String |            |
| ThumbFileLocation    | String |            |
| AuxInfo              | String |            |

# 9. Coordinate Conventions and Imaging Time

## 9.1 Coordinate Conventions

The coordinates include earth coordinates and image coordinates.

## 9.2 Earth Coordinates

The earth coordinates are expressed relatively to an earth-centered fixed (ECF) reference system that rotates with the earth. All ECF coordinates in IAD files are given in the WGS 84 reference system, including geocentric Cartesian coordinates (XE, YE, ZE) and geodetic coordinates (latitude, longitude). All heights are meters with respect to the WGS 84 ellipsoid.

## 9.3 Image Coordinates

An image address is specified as a (column, row) pair. When the image is displayed, column numbers increase toward the right and row numbers increase in the downward direction. Address (0, 0) corresponds to the pixel displayed in the upper left corner.

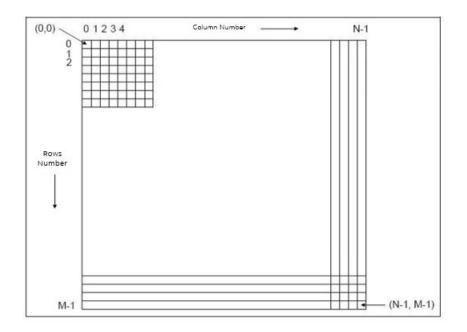



Figure 9. Image Coordinate System

The detector in column 0 of a detector array produces the pixels in column 0 of the corresponding Basic image.

## 9.4 Imaging Time

All absolute times are in Beijing Time in the format of YYYY-MM-DDThh:mm:ss.ddddddZ, unless otherwise specified. The relative time offsets from a fixed absolute time is measured in seconds, unless otherwise specified.

An example of both absolute Beijing time and the relative time is the time-tagged line count (TLC) data in the image metadata file. The TLC data, which are pairs of line numbers and the associated with exposure times, provide a way to accurately estimate the time of exposure of any line in the image. The first such timing event for an image is reported in the image metadata file as an absolute Beijing time, but subsequent events are reported as time offsets, in seconds, relative to this initial time.

# **10. Technical Support and Claims**

For any question, advice or problem, please kindly contact us at <u>GlobalTeam@spacewillinfo.com</u>. The team will assist you for any concern when you process the product.

SuperView-1 Satellite Imagery Product Guide is version 1.1. If the product is updated, the document will be updated without prior notice.

Hong Kong International Airport, China | Dec 17, 2019.

ar

Non Contraction

The same same

- ANA PARA

NY NY NY

----

have for

i tu

Contra to

🖀 +86.10.5881 8811 ext. 840 marketing@spacewillinfo.com
 www.spacewillinfo.com

🍠 f in 🗃